
Security of PLCs with Raspberry Pi
1st Vignau Benjamin

Student in Sécurité et Technologies Informatique
Institut National des Sciences Appliquées Centre Val de Loire

Bourges, France
benjamin.vignau@insa-cvl.fr

2nd Kawalec Joseph
Student in Sécurité et Technologies Informatique

Institut National des Sciences Appliquées Centre Val de Loire
Bourges, France

jospeh.kawalec@insa-cvl.fr

3rd Ronteix–Jacquet Flavien
Student in Sécurité et Technologies Informatique

Institut National des Sciences Appliquées Centre Val de Loire
Bourges, France

flavien.ronteix-jacquet@insa-cvl.fr

4th Mace Lorin
Student in Security Technologies Informatique

Institut National des Sciences Appliquées Centre Val de Loire
Bourges, France

lorin.mace@insa-cvl.fr

5th Briffaut Jérémy
Assistant Professor at Laboratoire d’Informatique Fondamentale d’Orléans

Institut National des Sciences Appliquées Centre Val de Loire
Bourges, France

jeremy.briffaut@insa-cvl.fr

Résumé—As the new CSO team of CannotPwn Factory, we
have to build a new system to control the factory. The last team
failed to handle a cyber attack. In result our company lost a lot
of money, and we have to built a new system more resilient.
Today, the PLCs are more present in factory, and control a lot
of criticals infrastructures. But, this systems are really weak, so
they are a great target to reduce productivity of industries or
plant.
The biggest example of cyber attack against PLC’s is stuxnet.
This program set up a huge ”man in the middle” attack and
corrupt data received and send to the PLCs. In result, stuxnet
was able to distort the comportment of PLCs and deteriorate
the centrifuge of Iranian power plants.

I. INTRODUCTION

In this challenge, we will try to develop our solution to
prevent, detect, and mitigate attacks such as stuxnet, against
PLCs. In a first part, we will describe our solution to protect
the system. After that, we will present our methods to test
our solution.
Our solution will be based on several ways to detect intrusion,
such as SIEM, powerful logs systems and correlators, integrity
check, real time comportment analysis. Of course all actions
will be logged, and if an error is considered too relevant, a
warning or a report will be send to the administrator.
To mitigate the attacks, we will correct minors and medium
errors thanks to a determinist behavior of PLCs. We will also
program a hard reset, that could allow us to wipe a PLCs
program and completely set up a new one, fully functional.
This hard reset will be used only if we detect a highly
corrupted systems.
We will also set up some honey pots to handle and analyse
some attacks. This will be useful to adapt our systems against

the new types of cyber attacks.
To test our solution, we will set up somes attacks, like leaking
critical informations (for fingerprinting), authentication
method bypass, replay attack, fuzzing, and alter the behaviour
of the PLCs withs some calculated errors.

II. CYBER ATTACK DETECTION

A. Logs systems

The first part of our solution is based on a huge log system.
This will log all the input and output of each GPIO of each
PLC. This system will be really useful with a behavior model
of the PLC, so it could compare reality and models, and
detect changes in the PLC behavior. Moreover, the log system
could also help to create betters models. We could use the
logs to detect some performance issues, and also, in case of
malicious inputs, we will be able to understand the behavior
that the attackers wanted to induce in the PLC. In the end,
if an attack succeed, an huge examination of the logs could
permit a better understood of the attack and will help to detect
others. For the log system we will use a SCADA system. We
are still hesitating for which software we will use. However,
because of it’s documentation (and because it is open-source)
OpenSCADA seems to be, for us, the best choice. This system
will allow us to make our own rules to prevent and detect cyber
attacks.

B. SIEM, correlators, IA and kernel built

Another way to detect intrusions in our system will be to
set up watchdogs, SIEM, and to create our own Artificial
Intelligence (AI) to warn the CSO. For that we will re-compile
our kernel with some flags to increase his security. Thanks to



whitelist of users and actions, our AI will define a probability
of corrupted system. In case of a too big probability, the CSO
will be warned and the PLC will be flushed and re-setuped.
But before flushing the PLC, we will save it to analyse the
attack and still upgrade the AI. Moreover, we will develop a
honeypot for protect our system and always learn new ways
of attacks to protect the systems against them.
Of course, our AI will not control the PLCs. Our AI is set up to
detect systems intrusions such as rootkit, trojans, or corrupted
programs.
We will compile our kernel to include grsecurity components
and impact as few as possible the performances of the system.
Thanks to it, we will be able to create our own roles and access
to criticals files such as /etc/passwd or the PLCs programs.
Moreover, we will develop our own probe and correlators
thanks to the framework prelude SIEM.

C. Behavior changes

The major section of our solution is based on behavior
analysis. For that, we will define a deterministic behavior
graph. In this, we will define all the possible states of a PLC,
and all the transitions. Each state will be a function that take
the inputs in arguments and could only send output to control
equipments or alert as result. Moreover, we could define somes
messages with the inputs tension of each GPIO and define
specifiques intervals for each transition. For example, we could
define a state A, and the transition to the state B could be 1
Volt, more or less 0.1V, so [0.9V,1.1V]. That will increase
resilience to physical issues.
Thanks to it, we will be able to control all the inputs and
outputs (I/O) of a PLC. All the I/O will be duplicate, and a
PLC, with only a connection to a private network (dedicated to
alert CSO) will have to control the correct behavior of the other
PLC. Thanks to it, if the PLC who is controlling the equipment
is corrupted by a program such as stuxnet, the second PLC
will detect a bad behavior and alert the CSO.

III. ATTACKS ISOLATIONS

A. Sandboxing

To increase the resistance of our solution, we have decided
to isolate all the PLCs and their components. Each of them
will have his own running environment. Again, we will do that
with Grsecurity and the PaX component. They will allow us
to define roles and authorize the programs to run only what
they have to do.
Moreover, thanks to the file system hardening (especially the
chroot hardening system and the trusted path execution) the
PLCs will be emulated run in their own environment. So, if
one is corrupted, he will not corrupt the others. Moreover,
Grsecurity permit to prevent direct userland access by kernel,
and hide other process to unprivileged users. This will also be
useful to isolate a detected attack on the system.

IV. MITIGATION

A. Errors correction with beahavior prediction

With a determinist behavior, we can wait for only few
values. We can determine all the authorized inputs and outputs
for each state. We can make a dynamic whitelist of the inputs,
by finding the right next state and we can correct input values
if it’s needed.
For example (see Behaviour graph), your PLC is in state E,
so you know that the only possibilities are to go to state B
or C. admit you need a 4V input on GPIO1 to go to B and
2V to go to C. If the PLC receive an 1.5V in GPIO1, he will
automatically act as if he had received a 2V input. Moreover,
each state must be programed to have a default behavior.
This will be used when the input values is too far away of
authorized inputs and the error could not be corrected. Back
to our example, if the input values is 0.5V, the PLC need a
default behavior such as ignore this value or go into an ”error
state” that will be defined in our error management.

B. Hard reset

If one of PLCs is detected as corrupted, we will make a hard
reset. That is to say, that we will flush all his programs and re
setup totally all the PLC. For that we will use the Union File
System that allow us to mount two partitions. One of them is
in read/write (rw) mode and the other is in the read only (ro)
mode. If the PLC is detected as corrupted, all the data in the
ro partition will replace the rw partition that is corrupted.

V. TEST OF OUR SOLUTION

We will test our solution with automated script to avoid
regression. We will make three kinds of tests.
First of all, for the attacks which are coming from GPIO pins,
we will try to fuzze the passed values at a defined ratio, to
improve our error detection and correction system. We will
also try to isolate request and try to replay them. It is in our
objective to test our raspberry in the worst case scenarios in
order to handle a maximum of perturbations.
In a second time, we will search for numerous vulnerabilities
on the other side of the infrastructure, like leaking critical
informations, bypassing authentication mechanisms, replaying
some requests, exploiting security misconfigurations, code
injections, race conditions and many others. . .
Finally, it is really important in this context to test the defence
in depth of our solution. We will test the isolation of our
system, with the privileges of critical parts and process of
our architecture, the reactivity and accuracy of our system for
detecting a corrupted PLC and to reset it. The accuracy is
really important here because if we can trigger hard resets a
lot, this can be viewed as a DDOS attack

VI. CONCLUSION

To conclude, our solution will be based on a behavior
analysis of the PLCs and the systems. We will develop our
own PLC behavior and look up for intrusions. Each issues
will be logged and if too importants errors are detected, the
CSO will be warned.



Our solution will impact as few as possible the system, because
the majority of the systems rules will be implemented in
the kernel. Moreover we will develop our own AI to detect
behavior changes, and we will try to optimize it as much as
possible. Our solution used a lot of framework, so we will not
construct all from scratch, but we will made a unique system,
dedicated to this problem.
Of course, we will test our systems by a lot of attacks, some
of them will be known, but we will also try to develop new
way to attack our solution.

VII. AND AFTER ?

In our first try to conceive a system, we were somewhat
ambitious with a solution that had 3 raspberry pi. The heart
of the solution was to separate physically 3 raspberry with 3
different function.
The first one, the system core, had 2 interfaces, one to the
PLC and one with the outside in order to control the whole
system. The first detection of attack attempt is with an AI that
will detect a suspicious behavior from the outside commands
like the manipulation of some files,... In this case, like in
our proposition of solution, the raspberry had a deterministic
behavior with the PLC if there has been no corruption.
To detect a bad behavior, we have an other raspberry with
the same initial configuration but without any connection to a
network, so we can be sure that this one can’t be corrupted
by a malware. The main idea is that the PLC will send to the
2 raspberry, the main reply with an instruction and the second
will compare the main’s answer with its own answer. if the 2
are too different, the second is going to hard reset the main.
At the hard reset of main, a backup raspberry (the third) will
completely reinstall the system.
This is a vision to the future because in addition to protect
the system with the protections mentioned above, we separate
physically (and from the network, source of attack) the pro-
tections, with backup and detection system on other raspberry.
Moreover we could made a huge server that will analyse all
the data from all the PLCs and always improve our solution.

VIII. FIGURES AND TABLES

FIGURE 1. Behavior state.

FIGURE 2. Logical components of each PLC.


